
# Elfini ストラクチャル・アナリシス 2 (EST)

ジェネレーティブ・パート・ストラクチャル・アナリシス 2(GPS) の 前処理、解析、後処理機能を拡張

Elfini ストラクチャル・アナリシス 2 (EST) は、GPS 製品の機能を拡張し、複数の静解析、周波数解析、座屈解析ケースを含むマルチ解析ケー スの機能を提供します。本製品はより解析専任者向けに設計されていますが、ユーザーインターフェースは設計エンジニアが使うものと統一 されています。ユーザーインターフェースを共通化することで、さまざまな専門分野間のチームワークを促進し、設計解析の所要時間を短縮 します。

## 主な特長

- ●静解析 (複数荷重ケースを含む)、静的拘束モード解析、周波数解析、座屈 解析ケースを作成し同時に計算
- ●ベアリング荷重や温度荷重の設定、外部アプリケーションからの可変荷 重等をインポートする機能を提供
- ●荷重、拘束、質量などのあらゆる解析条件をメッシュ上で表示。解析結果 イメージのカスタマイズや複数イメージの同時表示
- ●並列処理や ランチョス法などの 最先端技術により、大規模モデルをより 迅速に処理
- ■プリストレスを考慮した固有値解析
- ●レポートのカスタマイズ機能



複合材モデルの Tsai-Hill 破壊基準のコンター図

ジェネレーティブ・パート・ストラクチャル・ア ナリシス 2(GPS) が提供する機能やメリットに 加え、Elfini ストラクチャル・アナリシス 2(EST) では以下の機能を提供します。

## アドバンスド特性定義

ESTは、より高度な解析特性を定義できる機 能を提供します。物質の性質が方向によって 異なる直交異方性材料の定義や、メンブレイ ンやせん断パネルのモデル化、バー要素やよ り複雑なビーム要素の定義等を可能にします。

# 複合材解析

EST は、コンポジット・デザイン 3 (CPD) また は XML ファイルを使い定義された複合材パー ツの積層情報を使って、複合材定義の計算を 適切に行います。また、様々な複合材の破壊 評価値を表示でき、それにより設計者は複合 材設計対象が破断に至るかを予測できます。

# アドバンスド荷重定義

EST は、GPS をさらに拡張した多様な荷重オ プションを用意しているため、検証中の荷重 条件をより高い精度で表現します。オプション には以下が含まれています。

- ベアリング荷重: ベアリングを実際にモデル化 することなく、ベアリングを通して伝わる荷重 を表現できます。荷重のプロファイルや方向、 適用角度を指定できます。これらはナレッジウ エアを使用しても定義可能です。
- ・ 温度荷重: パーツの温度分布を指定でき、 その温度により生じる熱応力を計算します。
- 外部荷重: CATIA V5 以外の外部アプリケー ションから得た荷重データをインポートし適 用できます。荷重とその座標位置情報が書き 出された Excel のスプレッド・シート、また はテキスト・ファイルを CATIA 形状にマッピ

ングし、メッシュに自動転送します。この機 能により、他のシミュレーション・プログラム で実行されたシミュレーション結果や実験の 計算やテスト・データからの荷重条件に基づ いたパーツやアセンブリーの挙動を検討でき ます。

## 慣性リリーフ

荷重の釣り合いが取れていないモデルを解析 する場合、ESTは等加速度を計算、適用し、 明示的に拘束されていないモデルを静的に解 析します。

### 慣性定義

あるポイントでの集中慣性を定義できるため、 動的解析における質量と慣性分布定義をより 適切に行うことができます。

# 前処理の表示

ESTは、荷重、拘束、付加質量といった解析 条件の可視化、チェックするツールを提供して います。また、シンボルやテキスト等を用いて、 表示イメージをカスタマイズできます。

## 複数荷重ケース

航空宇宙をはじめとする多くの業界では、多 数の荷重ケースを計算します。一般的に 100 ま たは 1000 以上の荷重ケースがあることも珍し くありません。ESTは、複数の荷重ケースをパー ツおよびアセンブリーに簡単に定義し、それら を同時にかつ効率的に計算します。ESTはまた、 荷重ケースを組み合わせることができるため、 付加的にかかる荷重シナリオに対する挙動を 迅速かつ効率的に把握することができます。

# 座屈解析

EST では、コンポーネントに座屈が発生する荷 重を、固有値解析技術を用いて予測すること ができます。

# アドバンスド振動解析

GPS は、固有周波数やモード形状の計算が可 能ですが、EST ではより高度な機能を提供し ています。多数のモードを必要とする大規模モ デルを扱う場合にはランチョス法が大変効率 的です。あらかじめ荷重を与えた構造のモード や周波数を計算し、予荷重による剛性変化を 考慮できます。また、周波数をシフトし、対 象周波数範囲内におけるより精度の高いモー ド結果を得ることもできます。

### 安定した精度

GPS では、グローバル・エラーのターゲットを 指定することで、アダプティブ・メッシングに よる精度をコントロールしますが、EST ではさ らに、精度を上げたい特定の点、線、サーフェ スのエラー・ターゲットの指定ができます。こ のローカル・アダプティブにより、局所的に高 精度の結果を得られます。

#### 大規模モデルの解析

マルチコア・コンピュータで並列処理すること で計算時間を短縮できます。

# 結果評価

GPS では、構造の変位や応力評価が可能です が、ESTではさらに、ひずみ、接触面圧、反 力の検証にも対応します。複数荷重ケースの 解析では、一連の荷重ケースの中から最悪の ケースを判断するためのエンベロープ・ケース が利用できます。結果表示とレポートをユー ザーの個別ニーズに合わせカスタマイズできま す。ローカル・センサーやより高度なセンサー を利用して、例えば構造のある部分での力の 流れを視覚化できます。